Preface

This Working Group I contribution to the IPCC's Fourth Assessment Report (AR4) provides a comprehensive assessment of the physical science of climate change and continues to broaden the view of that science, following on from previous Working Group I assessments. The results presented here are based on the extensive scientific literature that has become available since completion of the IPCC's Third Assessment Report, together with expanded data sets, new analyses, and more sophisticated climate modelling capabilities.

This report has been prepared in accordance with rules and procedures established by the IPCC and used for previous assessment reports. The report outline was agreed at the 21st Session of the Panel in November 2003 and the lead authors were accepted at the 31st Session of the IPCC Bureau in April 2004. Drafts prepared by the authors were subject to two rounds of review and revision during which over 30,000 written comments were submitted by over 650 individual experts as well as by governments and international organizations. Review Editors for each chapter have ensured that all substantive government and expert review comments received appropriate consideration. The Summary for Policymakers was approved line-by-line and the underlying chapters were then accepted at the 10th Session of IPCC Working Group I from 29 January to 1 February 2007.

Scope of the Report

The Working Group I report focuses on those aspects of the current understanding of the physical science of climate change that are judged to be most relevant to policymakers. It does not attempt to review the evolution of scientific understanding or to cover all of climate science. Furthermore, this assessment is based on the relevant scientific literature available to the authors in mid-2006 and the reader should recognize that some topics covered here may be subject to further rapid development.

A feature of recent climate change research is the breadth of observations now available for different components of the climate system, including the atmosphere, oceans, and cryosphere. Additional observations and new analyses have broadened our understanding and enabled many uncertainties to be reduced. New information has also led to some new questions in areas such as unanticipated changes in ice sheets, their potential effect on sea level rise, and the implications of complex interactions between climate change and biogeochemistry.

In considering future projections of climate change, this report follows decisions made by the Panel during the AR4 scoping and approval process to use emission scenarios that have been previously assessed by the IPCC for consistency across the three Working Groups. However, the value of information from new climate models related to climate stabilization has also been recognized. In order to address both topics, climate modelling groups have conducted climate simulations that included idealized experiments in which atmospheric composition is held constant. Together with climate model ensemble simulations, including many model runs for the 20th and 21st centuries, this assessment has been able to consider far more simulations than any previous assessment of climate change.

The IPCC assessment of the effects of climate change and of options for responding to or avoiding such effects, are assessed by Working Groups II and III and so are not covered here. In particular, while this Working Group I report presents results for a range of emission scenarios consistent with previous reports, an updated assessment of the plausible range of future emissions can only be conducted by Working Group III.

The Structure of this Report

This Working Group I assessment includes, for the first time, an introductory chapter, Chapter 1, which covers the ways in which climate change science has progressed, including an overview of the methods used in climate change science, the role of climate models and evolution in the treatment of uncertainties.

Chapters 2 and 7 cover the changes in atmospheric constituents (both gases and aerosols) that affect the radiative energy balance in the atmosphere and determine the Earth's climate. Chapter 2 presents a perspective based on observed change in the atmosphere and covers the central concept of radiative forcing. Chapter 7 complements this by considering the interactions between the biogeochemical cycles that affect atmospheric constituents and climate change, including aerosol/ cloud interactions.

Chapters 3, 4 and 5 cover the extensive range of observations now available for the atmosphere and surface, for snow, ice and frozen ground, and for the oceans respectively. While observed changes in these components of the climate system are closely inter-related through physical processes, the separate chapters allow a more focused assessment of available data and their uncertainties, including remote sensing data from satellites. Chapter 5 includes observed changes in sea level, recognizing the strong interconnections between these and ocean heat content.

Chapter 6 presents a palaeoclimatic perspective and assesses the evidence for past climate change and the extent to which that is explained by our present scientific understanding. It includes a new assessment of reconstructed temperatures for the past 1300 years.

Chapter 8 covers the ways in which physical processes are simulated in climate models and the evaluation of models against observed climate, including its average state and variability. Chapter 9 covers the closely related issue of the extent to which observed climate change can be attributed to different causes, both natural and anthropogenic.

Chapter 10 covers the use of climate models for projections of global climate including their uncertainties. It shows results for different levels of future greenhouse gases, providing a probabilistic assessment of a range of physical climate system responses and the time scales and inertia associated with such responses. Chapter 11 covers regional climate change projections consistent with the global projections. It includes an assessment of model reliability at regional levels and the factors that can significantly influence regional scale climate change.

The Summary for Policymakers (SPM) and Technical Summary (TS) of this report follow a parallel structure and each includes cross references to the chapter and section where the material being summarized can be found in the underlying report. In this way these summary components of the report provide a road-map to the content of the entire report and the reader is encouraged to use the SPM and TS in that way.

An innovation in this report is the inclusion of 19 Frequently Asked Questions, in which the authors provide scientific answers to a range of general questions in a form that will be useful for a broad range of teaching purposes. Finally the report is accompanied by about 250 pages of supplementary material that was reviewed along with the chapter drafts and is made available on CDRom and in web-based versions of the report to provide an additional level of detail, such as results for individual climate models.

Question	Chapters
How has the science of climate change advanced since the IPCC began?	1
What is known about the natural and anthropogenic agents that contribute to climate change, and the underlying processes that are involved?	2, 6, 7
How has climate been observed to change during the period of instrumental measurements?	3, 4, 5
What is known of palaeoclimatic changes, before the instrumental era, over time scales of hundreds to millions of years, and the processes that caused them?	6, 9
How well do we understand human and natural contributions to recent climate change, and how well can we simulate changes in climate using models?	8, 9
How is climate projected to change in the future, globally and regionally?	10, 11
What is known about past and projected changes in sea level, including the role of changes in glaciers and ice sheets?	4, 5, 6, 10
Are extremes such as heavy precipitation, droughts, and heat waves changing and why, and how are they expected to change in the future?	3, 5, 9, 10, 11

Some key policy-relevant questions and issues addressed in this report and the relevant chapters

Acknowledgments

This assessment has benefited greatly from the very high degree of co-operation that exists within the international climate science community and its coordination by the World Meteorological Organization World Climate Research Program (WCRP) and the International Geosphere Biosphere Program (IGBP). In particular we wish to acknowledge the enormous commitment by the individuals and agencies of 14 climate modelling groups from around the world, as well as the archiving and distribution of an unprecedented amount (over 30 Terabytes) of climate model output by the Program for Climate Model Diagnosis and Intercomparison (PCMDI). This has enabled a more detailed comparison among current climate models and a more comprehensive assessment of the potential nature of long term climate change than ever before.

We must emphasise that this report has been entirely dependent on the expertise, hard work, and commitment to excellence shown throughout by our Coordinating Lead Authors and Lead Authors with important help by many Contributing Authors. In addition we would like to express our sincere appreciation of the work carried out by the expert reviewers and acknowledge the value of the very large number of constructive comments received. Our Review Editors have similarly played a critical role in assisting the authors to deal with these comments.

The Working Group I Bureau, Kansri Boonpragob, Filippo Giorgi, Bubu Jallow, Jean Jouzel, Maria Martelo and David Wratt have played the role of an editorial board in assisting with the selection of authors and with guiding the initial outline of the report. They have provided constructive support to the Working Group Co-Chairs throughout for which we are very grateful.

Our sincere thanks go to the hosts and organizers of the four lead author meetings that were necessary for the preparation of the report and we gratefully acknowledge the support received from governments and agencies in Italy, China, New Zealand and Norway. The final Working Group I approval session was made possible by Mr Marc Gillet through the generosity of the government of France and the session was greatly facilitated by Francis Hayes, the WMO Conference Officer.

It is a pleasure to acknowledge the tireless work of the staff of the Working Group I Technical Support Unit, Melinda Marquis, Kristen Averyt, Melinda Tignor, Roy Miller, Tahl Kestin and Scott Longmore, who were ably assisted by Zhenlin Chen, Barbara Keppler, MaryAnn Pykkonen, Kyle Terran, Lelani Arris, and Marilyn Anderson. Graphics support and layout by Michael Shibao and Paula Megenhardt is gratefully appreciated. We thank Reto Stockli for kindly providing images of the Earth from space for the cover of this report. Assistance in helping the Co-Chairs to organize and edit the Frequently Asked Questions by David Wratt, David Fahey, and Susan Joy Hassol, is also appreciated. We should also like to thank Renate Christ, Secretary of the IPCC, and Secretariat staff Jian Liu, Rudie Bourgeois, Annie Courtin and Joelle Fernandez who provided logistical support for government liaison and travel of experts from developing countries and transitional economy countries.

Rajendra K. Pachauri	Susan Solomon	Dahe Qin	Martin Manning
IPCC Chairman	IPCC WGI Co-Chair	IPCC WGI Co-Chair	IPCC WGI TSU Head